Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco.
نویسندگان
چکیده
Squalene synthase (SS) represents a putative branch point in the isoprenoid biosynthetic pathway capable of diverting carbon flow specifically to the biosynthesis of sterols and, hence, is considered a potential regulatory point for sterol metabolism. For example, when plant cells grown in suspension culture are challenged with fungal elicitors, suppression of sterol biosynthesis has been correlated with a reduction in SS enzyme activity. The current study sought to correlate changes in SS enzyme activity with changes in the level of the corresponding protein and mRNA. Using an SS-specific antibody, the initial suppression of SS enzyme activity in elicitor-challenged cells was not reflected by changes in the absolute level of the corresponding polypeptide, implicating a post-translational control mechanism for this enzyme activity. In comparison, the absolute level of the SS mRNA did decrease approximately 5-fold in the elicitor-treated cells, which is suggestive of decreased transcription of the SS gene. Study of SS in intact plants was also initiated by measuring the level of SS enzyme activity, the level of the corresponding protein, and the expression of SS gene promoter-reporter gene constructs in transgenic plants. SS enzyme activity, polypeptide level, and gene expression were all localized predominately to the shoot apical meristem, with much lower levels observed in leaves and roots. These later results suggest that sterol biosynthesis is localized to the apical meristems and that apical meristems may be a source of sterols for other plant tissues.
منابع مشابه
Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase.
To get some insight into the regulatory mechanisms controlling the sterol branch of the mevalonate pathway, tobacco (Nicotiana tabacum cv Bright Yellow-2) cell suspensions were treated with squalestatin-1 and terbinafine, two specific inhibitors of squalene synthase (SQS) and squalene epoxidase, respectively. These two enzymes catalyze the first two steps involved in sterol biosynthesis. In hig...
متن کاملTranscriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae.
The ergosterol biosynthetic pathway is a specific branch of the mevalonate pathway. Since the cells requirement for sterols is greater than for isoprenoids, sterol biosynthesis must be regulated independently of isoprenoid biosynthesis. In this study we explored the transcriptional regulation of squalene synthase (ERG9) in Saccharomyces cerevisiae, the first enzyme dedicated to the synthesis of...
متن کاملImproved fruit α‐tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3‐HYDROXY‐3‐METHYLGLUTARYL‐COA SYNTHASE1 in transgenic tomato
3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild-type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up-regulated several genes in sterol biosynthesis and increased sterol con...
متن کاملSterol biosynthesis by a prokaryote: first in vitro identification of the genes encoding squalene epoxidase and lanosterol synthase from Methylococcus capsulatus.
Sterol biosynthesis by prokaryotic organisms is very rare. Squalene epoxidase and lanosterol synthase are prerequisite to cyclic sterol biosynthesis. These two enzymes, from the methanotrophic bacterium Methylococcus capsulatus, were functionally expressed in Escherichia coli. Structural analyses of the enzymatic products indicated that the reactions proceeded in a complete regio- and stereospe...
متن کاملDown-regulation of cholesterol biosynthesis in sitosterolemia: diminished activities of acetoacetyl-CoA thiolase, 3-hydroxy-3-methylglutaryl-CoA synthase, reductase, squalene synthase, and 7-dehydrocholesterol D 7 -reductase in liver and mononuclear leukocytes
Sitosterolemia is a recessively inherited disorder characterized by abnormally increased plasma and tissue plant sterol concentrations. Patients have markedly reduced whole body cholesterol biosynthesis associated with suppressed hepatic, ileal, and mononuclear leukocyte 3-hydroxy3-methylglutaryl coenzyme A (HMG-CoA) reductase, the ratecontrolling enzyme in cholesterol biosynthetic pathway, cou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 129 3 شماره
صفحات -
تاریخ انتشار 2002